La guerre des records sur les logarithmes discrets

Aprés le record annoncé par A. Joux, voici un nouveau record de  Faruk Gologlu, Robert Granger, Gary McGuire et Jens Zumbragel :

"We are very pleased to announce a new record for the computation of discrete logarithms in finite fields. In particular, we were able to compute discrete logarithms in the field GF(2^6120) in only 749.5 core-hours. As far as we are aware, the previous record for discrete logarithms in binary fields was in GF(2^4080) (ndldr : celui d'Antoine Joux dont on a parlé précédemment).

This computation was performed using a hybrid index calculus algorithm, combining our polynomial time relation generation method for degree 1 elements of the extension GF(2^6120) / GF(2^24), an enhanced variant of our polynomial time degree 2 elimination method from the same paper, an analogue of Joux's elimination method for other small degrees, and a variant of classical descent for all higher degrees."

On peut voir l'annonce ici.

Ces auteurs avaient établi précédemment un record de 1971 bits (voir l'article ici).

 

Copyright © 2024 Association de Cryptographie Théorique et Appliquée. Tous droits réservés.
Joomla! est un logiciel libre sous licence GNU/GPL.