La guerre des records sur les logarithmes discrets
Mise à jour le Lundi, 22 Avril 2013 13:46 Écrit par Administrator Lundi, 22 Avril 2013 13:30
Aprés le record annoncé par A. Joux, voici un nouveau record de Faruk Gologlu, Robert Granger, Gary McGuire et Jens Zumbragel :
"We are very pleased to announce a new record for the computation of discrete logarithms in finite fields. In particular, we were able to compute discrete logarithms in the field GF(2^6120) in only 749.5 core-hours. As far as we are aware, the previous record for discrete logarithms in binary fields was in GF(2^4080) (ndldr : celui d'Antoine Joux dont on a parlé précédemment).
This computation was performed using a hybrid index calculus algorithm, combining our polynomial time relation generation method for degree 1 elements of the extension GF(2^6120) / GF(2^24), an enhanced variant of our polynomial time degree 2 elimination method from the same paper, an analogue of Joux's elimination method for other small degrees, and a variant of classical descent for all higher degrees."
On peut voir l'annonce ici.
Ces auteurs avaient établi précédemment un record de 1971 bits (voir l'article ici).