Les modes d'utilisation

Le mode Electronic Code Book (ECB) 1

Chiffrement:

Entrée: k blocs de texte clair de taille t_d , $P_1P_2\cdots P_k$.

Sortie : k blocs de chiffré Sortie : k blocs de texte clair

de taille t_d , $C_1C_2\cdots C_k$.

$$C_1 = \mathcal{E}_K(P_1)$$

$$C_i = \mathcal{E}_K(P_i)$$

$$C_k = \mathcal{E}_K(P_k)$$

Déchiffrement:

Entrée: k blocs de chiffré de taille t_d , $C_1C_2\cdots C_k$.

de taille t_d , $P_1P_2\cdots P_k$.

$$P_1 = \mathcal{D}_K(C_1)$$

$$P_i = \mathcal{D}_K(C_i)$$

$$P_k = \mathcal{D}_K(C_k)$$

2 Le mode Cipher FeedBack (CFB)

Chiffrement:

Entrée: k blocs de texte clair de taille $s < t_d$, $P_1 P_2 \cdots P_k$. de taille t_d suivi de Sortie: 1 blocs de chiffré de taille t_d suivi de k blocs de chiffré de taille s, $I_1C_1C_2\cdots C_k$.

$$I_1 \leftarrow \{0, 1\}^{t_d}$$
 $Z_1 = \mathcal{E}_K(I_1)$
 $C_1 = P_1 \oplus MSB_s(Z_1)$
 \dots
 $I_i = LSB_{t_d-s}(I_{i-1})||C_{i-1}$
 $Z_i = \mathcal{E}_K(I_i)$
 $C_i = P_i \oplus MSB_s(Z_i)$
 \dots
 $I_k = LSB_{t_d-s}(I_{k-1})||C_{k-1}$
 $Z_k = \mathcal{E}_K(I_k)$
 $C_k = P_k \oplus MSB_s(Z_k)$

Déchiffrement:

Entrée: 1 blocs de chiffré k blocs de chiffré de taille s, $I_1C_1C_2\cdots C_k$.

> Sortie: k blocs de texte clair de taille $s < t_d, P_1 P_2 \cdots P_k$.

$$Z_{1} = \mathcal{E}_{K}(I_{1})$$

$$P_{1} = C_{1} \oplus MSB_{s}(Z_{1})$$

$$\vdots$$

$$I_{i} = LSB_{t_{d}-s}(I_{i-1})||C_{i-1}$$

$$Z_{i} = \mathcal{E}_{K}(I_{i})$$

$$P_{i} = C_{i} \oplus MSB_{s}(Z_{i})$$

$$\vdots$$

$$I_{k} = LSB_{t_{d}-s}(I_{k-1})||C_{k-1}$$

$$Z_{k} = \mathcal{E}_{K}(I_{k})$$

$$P_{k} = C_{k} \oplus MSB_{s}(Z_{k})$$

Le mode Cipher Block Chaining (CBC) 3

Chiffrement:

Entrée : k blocs de texte clair de taille t_d , $P_1P_2\cdots P_k$.

Sortie: k + 1 blocs de chiffré Sortie: k blocs de texte clair de taille t_d , $C_0C_1C_2\cdots C_k$.

$$C_0 \leftarrow \{0, 1\}^{t_d}$$

$$C_1 = \mathcal{E}_K(C_0 \oplus P_1)$$

$$C_i = \mathcal{E}_K(C_{i-1} \oplus P_i)$$
...

$$C_k = \mathcal{E}_K(C_{k-1} \oplus P_k)$$

Déchiffrement:

Entrée : k + 1 blocs de chiffré de taille t_d , $C_0C_1C_2\cdots C_k$.

de taille t_d , $P_1P_2\cdots P_k$.

$$P_1 = \mathcal{D}_K(C_1) \oplus C_0$$

$$P_i = \mathcal{D}_K(C_i) \oplus C_{i-1}$$

$$P_k = \mathcal{D}_K(C_k) \oplus C_{k-1}$$

Le mode Output FeedBack (OFB) 4

Chiffrement:

Entrée : k blocs de texte clair de taille t_d , $P_1P_2\cdots P_k$.

de taille t_d , $Z_0C_1C_2\cdots C_k$.

$$Z_0 \leftarrow \{0,1\}^{t_d}$$

$$Z_1 = \mathcal{E}_K(Z_0)$$

$$C_1 = Z_1 \oplus P_1$$

$$Z_i = \mathcal{E}_K(Z_{i-1})$$

$$C_i = Z_i \oplus P_i$$

$$Z_k = \mathcal{E}_K(Z_{k-1})$$

$$C_k = Z_k \oplus P_k$$

Déchiffrement:

Entrée : k + 1 blocs de chiffré de taille t_d , $Z_0C_1C_2\cdots C_k$.

Sortie: k + 1 blocs de chiffré Sortie: k blocs de texte clair

de taille t_d , $P_1P_2\cdots P_k$.

$$Z_1 = \mathcal{E}_K(Z_0)$$

$$P_1 = Z_1 \oplus C_1$$

$$Z_i = \mathcal{E}_K(Z_{i-1})$$

$$P_i = Z_i \oplus C_i$$

$$Z_k = \mathcal{E}_K(Z_{k-1})$$

$$P_k = Z_k \oplus C_k$$

5 Le mode Counter (CTR)

Chiffrement:

Entrée : k blocs de texte clair Entrée : k+1 blocs de chiffré

de taille t_d , $P_1P_2\cdots P_k$.

Sortie: k + 1 blocs de chiffré Sortie: k blocs de texte clair

de taille t_d , $(CTR_1)C_1C_2\cdots C_k$. de taille t_d , $P_1P_2\cdots P_k$.

Déchiffrement:

de taille t_d , $(CTR_1)C_1C_2\cdots C_k$.

$$CTR_1 \leftarrow \{0,1\}^{t_d}$$

$$Z_1 = \mathcal{E}_K(CTR_1)$$

$$C_1 = Z_1 \oplus P_1$$

$$CTR_i =$$

$$CTR_{i-1} + 1 \mod 2^{t_d}$$

$$Z_i = \mathcal{E}_K(CTR_i)$$

$$C_i = Z_i \oplus P_i$$

$$CTR_k =$$

$$CTR_{k-1} + 1 \mod 2^{t_d}$$

$$Z_k = \mathcal{E}_K(CTR_k)$$

$$C_k = Z_k \oplus P_k$$

 $Z_1 = \mathcal{E}_K(CTR_1)$

$$P_1 = Z_1 \oplus C_1$$

$$CTR_i =$$

$$CTR_{i-1} + 1 \mod 2^{t_d}$$

$$Z_i = \mathcal{E}_K(CTR_i)$$

$$P_i = Z_i \oplus C_i$$

$$CTR_k =$$

$$CTR_{k-1} + 1 \mod 2^{t_d}$$

$$Z_k = \mathcal{E}_K(CTR_k)$$

$$P_k = Z_k \oplus C_k$$